
 Performance of map and reduce tasks are modeled from execution times of each phase in these tasks. For 

example, execution time for a single Reduce task can be modeled as 

 For RDMA-based MR, execution time can be re-modeled [2] 
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Design features for RDMA 

 Prefetch/Caching of MOF 

 In-Memory Merge 

 Overlap of Merge & Reduce 

 MapReduce is the de-facto parallel programming model for big data processing 

 Open-source implementations from Apache (Hadoop, Spark, Tez) are the most popular frameworks 

because of proven scalability and fault-tolerance 

 Java sockets based communication 

model for bulk data transfer in shuffle 

 Costly frequent disk operations in 

the job execution workflow 

 Cannot take advantage of global 

file systems because of shared-nothing 

based architecture 

 For large scale data processing, HOMR achieves significant performance benefits compared to default 

Hadoop MapReduce; leverages benefit from modern HPC resources (RDMA and Lustre) 

 Future plan is to design advanced DAG execution framework (e.g. Tez) with modern HPC resources 
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 HOMR [3] (Hybrid Overlapping in 

MapReduce) is designed to have maximum 

possible overlapping across all phases of 

MapReduce  

 HOMR also ensures faster job 

execution over other high performance 

interconnects (10GigE, IPoIB) because of 

its new shuffle algorithms; provides the 

fastest execution over RDMA  

 HOMR assigns weights to different maps to signify how much data to shuffle on each request; this 

assignment can be greedy / all-average  

 Initial static weight assignment is updated by on-demand adjustment which makes each shuffle to bring 

only the map outputs needed; Intelligent shuffling provides faster job execution pipeline 

 

  MRoIB [1] introduces RDMA-based shuffle, replacing the 

slower HTTP-based request response messages 

  MOFs are divided into small packets and are shuffled instead 

of shuffling the entire data at once as in default framework 

 No on-disk merge. Initially, small packets of data are required 

to create the Priority Queue (PQ); subsequent packets are inserted 

in this PQ for sorting operation 

 Merge and Reduce phase can run in an overlapping manner 

  Pre-fetching and caching of Map Output Files are 

introduced to accelerate the response from TaskTracker 

for each request of ReduceTasks 

 Performance evaluation shows 39% (31%) reduction 

in time with 2 HDD/node (1 HDD/node) for HDFS 

 Simplified prediction model 

[5] is empirically derived from the 

detailed performance model 

 Compared to Starfish, 

MACGYVER can achieve better 

speedup for different applications 

 Default MapReduce cannot take advantage of the underlying 

global file system in HPC clusters, such as Lustre 

 We propose an advanced design of HOMR, that can utilize 

Lustre and extract further benefits 

 The intermediate data directory can be configured to the local 

disks [4] or Lustre [6] or a combination of both [7] 

 Advanced design of HOMR can dynamically detect which shuffle 

policy is efficient for a particular job execution and switch from one to 

another during runtime 
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Software Distribution 
 HOMR is publicly available in “RDMA for Apache Hadoop” public release (http://hibd.cse.ohio-state.edu) 

 As of Sep '16, more than 17,850 downloads (190 different organizations) have taken place from this site 
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 We design a generalized parameter tuning and prediction framework (MACGYVER) for any MapReduce 

implementation [8] 

 Automatic tuning, profiling is 

performed for MapReduce 

implementations in Hadoop, Spark, 

and HOMR with file systems – 

HDFS, Lustre, and Tachyon 

 Generalized configuration 

parameter space is devised to 

facilitate different MapReduce 

implementations  

 MACGYVER can also perform profiling and performance prediction using performance analytical models 

MACGYVER (MR-2x-IPoIB) 
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