Phase Estimation in Spacekime Representation

Daxuan Deng
daxuand@umich.edu

SOCR
University of Michigan

www.SOCR.umich.edu
Overview

- **Goal**: treat 'time' as a complex variable and to estimate its phase.

- **Intuition**: the observed data is a mixture of two underlying processes.

- **Strategy**:
 1. Identify the hidden processes.
 2. Set them as basis, and to examine the coefficients of the observed data in terms of this basis.
Signal processing

1. Transform the signal into frequency space.
2. Divide the frequencies into two parts (e.g. high frequencies and low ones).
3. Transform two parts back as basis.
4. Estimate the phase between the original signal and the basis signals by

\[\phi = \arccos \left(\frac{\langle f, f_1 \rangle}{\|f\| \|f_1\|} \right) \]
Mixture Probabilistic Model

- Model the underlying processes follow some distributions (random processes).
- The observed process is a probabilistic mixture.

\[X = \pi X_1 + (1 - \pi) X_2 \]

- The phase can be estimated by

\[\varphi = \arctan\left(\frac{\pi}{1 - \pi} \right) \]
Application on economics forecasting

based on fitting ARIMAX Models on spline interpolated & kime-transformed Belgium data

Model(GDP) → ARIMAX(p, q, r); XReg = X_i, i ∈ 1:131

Training Region (2000-2014)
Validation Region (2015-2017)